MATH 2250 Calculus Name:
Eric Perkerson Date: November 22, 2015

Practice Test No. 4

Show all of your work, label your answers clearly, and do not use a calculator.

Problem 1 (15 points) State both parts of the Fundamental Theorem of Calculus:
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Problem 2 (10 points) Find the definite integral f_TG f(x)dz using the graph of f(z)

given below. Show as much work as you can for partial credit. (The portion of the graph
that looks like a semicircle is in fact a semicircle).
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Problem 3 (25 points) Evaluate the following antiderivatives, definite integrals, and
average values.
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Problem 5 (15 points) A small ball is stuck on the end of a spring, and the ball
is bouncing up and down on the spring. The vertical acceleration function of the ball is
a(t) = sin(t), the velocity at t = 7 is v(mw) = 1, and the position at ¢ = 7 is s(7) = 3, answer
the following questions:
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Problem 6 (15 points) A container in the shape of a right circular cylinder without a
top has a surface area Hm ft2 What helght_and radlus w1ll maximize the volume? T
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Problem 7 (15 points) For this problem, you will need the formula

Zk _ n(n+1)
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a Tirst use either high school geometry or the Fundamental Theorem of Calculus to compute the definite
1
integralf 3x + 1dz.
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b Using the definition and picking c;, as the right end point of the k'™ interval, write an expression for the
Riemann sum in terms of n, the number of rectangles the interval [0,1] is divided up into.
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¢ Take the limit of the expression from part b to find the definite integral / 3z + ldz using the definition
0

and picking ¢y as the right end point of the k™ interval.
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